
Array Comparisons With Value Updates

Research Question: How to determine whether two arrays of equal size are

identical if array values will be updated

Subject Area: Computer Science

Word count: 3914

Contents

1 Introduction 2

2 Naive Solution in O(QN) Time Complexity 3

3 Optimized Solution in O(QlogN) Time Complexity 4

3.1 Polynomial Hash . 5

3.1.1 Using Prefix Sum To Compare Equal-Sized Segments of Sequences . . . 6

3.2 Binary Indexed Tree . 10

3.2.1 Querying using binary indexed tree . 12

3.2.2 Value Updates using Binary Indexed Tree 14

3.2.3 Constructing a Binary Indexed Tree . 15

3.2.4 Finding Least Significant Bit of a Number 16

3.3 Extending Binary Indexed Trees To Maintain Polynomial Hashes 17

4 Conclusion 19

5 Citations 20

1

1 Introduction

In a computing contest hosted on the online judging platform DMOJ, I came across a particular

computational problem that I was unable to solve within the time provided.

The exact problem statement and constraints are as follows(maxcruikshanks,

2023):

Given an array, A of N integers, find the answers to Q queries of 2 types,

1 l1 r1 l2 r2: Output 1 if the subarray from [l1, r1] is identical to [l2, r2] or 0 if they

are not identical. An array is identical to another if the lengths are equal and the

same numbers are present in the same order.

2 i v: Update the integer at index i to v.

Constraints:

For all subtasks:

Time Limit: 3 seconds

1 ≤ N,Q ≤ 5× 105

1 ≤ Ai, v ≤ 109

r1 − l1 = r2 − l2

1 ≤ l1 ≤ r1 ≤ N

1 ≤ l2 ≤ r2 ≤ N

Subtask 1

1 ≤ N,Q ≤ 5000

Subtask 2

No additional constraints.

The problem asks to find a way to check whether two equal-sized arrays are identical; numbers

are present in the same order. The problem first presents an array, A of N integers and asks

the contestant to answer Q queries of two types. The first type query is a query that asks

2

the contestant to check whether two subarrays of the same length formed by given indices

are identical, requesting the contestant to output a ”1” (signifying the boolean value true)

if the arrays are identical and a ”0” (signifying the boolean value false) if the arrays are not

identical. This first type of query begins with a ”1” to indicate the first type of query followed

by l1 and r1, giving the left and right index of one array and l2 and r2, giving the left and

right index of the other array. Together, the first type of query can be represented as ”1 l1

r1 l2 r2”. The second type of query is a query that asks the contestant to update the value

present at an index in the array with another value. This second type of query begins with a

”2” to indicate the second type of query followed by i and v, giving the index of the array to

update and the updated value.

The problem was divided into two subtasks where each subtasks had different constraints

for the input given. Most importantly, subtask 1 had constraints on N (the length of the

array) and Q (the number of queries) that were significantly more strict (1 ≤ N ≤ 5000 and

1 ≤ Q ≤ 5000) than that of subtask 2 (1 ≤ N ≤ 5× 105 and 1 ≤ Q ≤ 5× 105). Subtask 1’s

strict constraints rewarded people who found simpler solutions that were sufficient for smaller

cases while subtask 2 of the problem asked for a more optimized solution given the loose

constraints.

In this paper, I aim to investigate the different possible solutions possible for each subtask

of this problem, as well as the differing solutions’ respective performance and scalability.

2 Naive Solution in O(QN) Time Complexity

For subtask 1, it can be recognized by looking at the constraints that N and Q are at most

5000. After understanding that N and Q are at most 5000, a simple brute-force algorithm

can be attempted, where the subarray comparisons are computed directly by comparing the

value present at each index of the two subarrays and checking for equivalence. If there is any

index where the value from the subarrays do not match the subarrays are not identical and

the subarrays are identical. In the worst case, array comparisons will require N operations

3

(if l1 = l2 = 1 and r1 = r2 = N). Therefore this results in an worst-case time complexity of

O(QN) to process all Q queries. Since N and Q are at most 5000, it will take around 2.5×107

operations to process all Q queries in the worst case, which is possible for many programming

languages as most are able to perform at least 107 operations per second. The procedure of

the subarray comparison may be expressed in pseudocode as follows.

Algorithm 1 Naive Subarray Comparison

1: procedure Compare(arr, l1, r1, l2, r2)
2: arrlen := r1 - l1 ▷ Equivalently, r2 - l2
3: for i:=0 to arrlen do
4: if arr[l1 + i - 1] ̸= arr[l2 + i - 1] then
5: return False ▷ The subarrays are not equal

6: return True ▷ The subarrays are equal

3 Optimized Solution in O(QlogN) Time Complexity

For subtask 2, N and Q are at most 5× 105, rendering the previously discussed naive O(QN)

solution inefficient. For this subtask, a more optimized solution needs to be developed. Specif-

ically, the way subarrays are compared needs to be made more efficient. One method of opti-

mization is through the use of hashing and data structures that can handle range-sum queries

and value updates with a time complexity faster than linear time complexity. Two data struc-

tures that could be used is the binary indexed tree (also known as a Fenwick tree) and the

segment tree as they are both able to handle the two aforementioned types of operations in

logarithmic time complexity. In this paper, the binary indexed tree will be the data structure

that is used due to its relative ease to understand and implement compared to the segment

tree. Likewise, polynomial hashing will be the method of hashing that will be used in this

paper as it is a relatively simple approach to hashing, using only addition, multiplication, and

the modulo operator to generate hashes.

The optimized solution will use the algorithms and data structures, like polynomial hashing

and the binary indexed tree, introduced above to speed up subarray comparisons by comparing

4

the hash values of subarrays instead of the elements in the subarrays. In the optimized solution,

hash values of the indicated subarrays will be obtained and compared for equivalence. If the

hash of the two subarrays are equal the two subarrays are identical (output ”1”), otherwise the

two subarrays are not identical (output ”0”). By comparing hash values instead of individual

elements of the subarrays, the total number of comparisons needed for each query of the first

type is reduced as only one comparison is needed instead of N comparison. In the optimized

solution, the binary indexed tree is used to help maintain the hash values of subarrays and

keep them up-to-date with the changes in the array that happens due to queries of the second

type.

3.1 Polynomial Hash

Polynomial hash is a relatively simple approach to string hashing that only uses addition,

multiplication, and the modulo operator. Polynomial hashing is also sometimes known as the

rolling-hash of strings, originating from its extensive use in the explanation of the Rabin-Karp

string searching algorithm(Moore and Chumbley and Khim, n.d).

A polynomial hash, H, generated using an array a, is generally defined as

H(a) = (a0 × pn−1 + a1 × pn−2 + a2 × pn−3 + ...+ an−1 × p0) mod M

where ai is the integer at the ith index of an array (in the case where a is a string, ai is the

ASCII1 value of the ith character of the string) and p and M are arbitrary prime numbers

where p ≪ M .

The procedure of constructing a polynomial hash from an index l to an index r ((1 ≤ l ≤

r ≤ N)) could be expressed in pseudocode as follows.

1American Standard Code for Information Interchange

5

Algorithm 2 Polynomial Hashing

1: procedure hash(arr, p, M, l, r)
2: hash := 0
3: for i:=l to r do
4: hash *= p
5: hash += arr[i]
6: hash %= M ▷ % denotes the modulus operator

7: return hash

As seen in the pseudo-code, polynomial hashes of any arbitrary length can be computed

using a sequence of multiplication, addition, and modular arithmetic (see Algorithm 2). This

is because of how polynomial hashes factor into a series of basic arithmetic operations as

shown below.

H(a) = (a0 × pn−1 + a1 × pn−2 + a2 × pn−3 + ...+ an−2 × p1 + an−1 × p0) mod M

= (p(a1 × pn−2 + a2 × pn−3 + a3 × pn−4 + ...+ an−3 × p1 + an−2 × p0) + an−1) mod M

= (p(p(a1 × pn−3 + a2 × pn−4 + a3 × pn−5 + ...+ an−4 × p1 + an−3 × p0) + an−2) + an−1) mod M

= (p(p(p(a1 × pn−4 + a2 × pn−5 + a3 × pn−6 + ...+ an−5 × p1 + an−4 × p0) + an−3) + an−2)

+ an−1) mod M ...

= p(p(p(...p(p(0) mod M+ a1 mod M) + ...) + an−2 mod M) + an−1 mod M) + an mod M

The 0 is included at the core of the factorized form to cover the case of a polynomial hash of

length 0, in which the polynomial hash would simply have a value of 0.

3.1.1 Using Prefix Sum To Compare Equal-Sized Segments of Sequences

Prefix sum or cumulative sum is a method of pre-computation to generate a sequence of

numbers representing the sum of prefixes (Blelloch, n.d); running sum of all numbers up to a

certain index i (inclusive). For a 1-indexed array of numbers, x consisting of x1, x2, x3, ..., a

1-indexed sequence, prefix, representing its prefix sums can be expressed as follows.

6

prefix0 = 0

prefix1 = x1

prefix2 = x1 + x2

prefix3 = x1 + x2 + x3

prefix4 = x1 + x2 + x3 + x4

prefix5 = x1 + x2 + x3 + x4 + x5

...

By manipulating these pre-computed prefix sums through subtraction, the sum of a range

of values from any index i to any index j (1 ≤ i ≤ j ≤ N) can be obtained (the sum of a

certain range of indices will be referred to as a ”range sum”). Let the function range sum(i,

j) denote a procedure that sums the values from index i to index j, inclusive. Using the

previously described sequence, x, range sum(2, 3) = x2+x3. Similarly, using prefix sums and

subtraction:

range sum(2, 3) = prefix3 − prefix1

= (x1 + x2 + x3)− (x1)

= x2 + x3

In general, any sum of numbers from index i to index j (1 ≤ i ≤ j ≤ N) can be obtained

through the following expression where prefixj denotes the prefix sum of values up to the jth

index and prefixi−1 denotes the prefix sum of values up to the (i− 1)th index.

range sum(i, j) = prefixj − prefixi−1

7

Knowing this, prefix sums can be extended to compare subarrays with the help of polyno-

mial hashing in a similar way. By computing prefix hashes instead of prefix sums, the hash of

any range of indices can be found using a similar formula used for range sums. In this context,

a prefix hash of some arbitrary length n represents the polynomial hash that is obtained if

we consider only the first n elements of an array. Using the previously declared sequence of

numbers x, a prefix hash of length 3 can be expressed as follows, where hash denotes the

resultant polynomial hash and p and M are arbitrary prime numbers where p ≪ M .

hash = (x1 × p2 + x2 × p1 + x3 × p0)mod M

For array x declared above, let prefix hash denote its sequence of prefix hashes, where

prefix hashi gives a prefix hash of length i of array x.

prefix hash0 = 0

prefix hash1 = x1 × p0

prefix hash2 = x1 × p1 + x2 × p0

prefix hash3 = x1 × p2 + x2 × p1 + x3 × p0

prefix hash4 = x1 × p3 + x2 × p2 + x3 × p1 + x4 × p0

prefix hash5 = x1 × p4 + x2 × p3 + x3 × p2 + x4 × p1 + x5 × p0

...

Using prefix hash, the hash of a range from any index i to any index j (1 ≤ i ≤ j ≤ N) can

be computed similarly to range sums (the hash of a certain range of indices will be referred

to as a ”range hash”). Let the function range hash(i, j) denote the procedure for generating

a polynomial hash for values from index i to index j, inclusive. For example, if i was 3 and

j was 5, range hash(3, 5) would return x3 × p2 + x4 × p1 + x5 × p0. Similarly, applying the

8

same technique that was used to calculate range sums

range hash(3, 5) = prefix hash5 − prefix hash3−1

= prefix hash5 − prefix hash2

= (x1 × p4 + x2 × p3 + x3 × p2 + x4 × p1 + x5 × p0)

− (x1 × p1 + x2 × p0)

, it can be seen that the hash value computed does not match that of the proper polynomial

hash from index 3 to index 5. However, in the computation using prefix hashes, it can also

be observed that the difference between the index of p on the first term, x1, between the two

prefix hashes is equal to 4 − 1 = 3. Likewise, comparing the index of p on the second term,

x2, the same difference of 3 can be observed. More generally, this difference can be expressed

by (j − 1)− (i− 1− 1) = j − i+ 1, obtained simply by subtracting the highest powers of p of

the two prefix hashes. This difference in the index of p between common terms between the

two prefix hashes used to compute range hashes will always be equal to j − i+1 as the index

of p decreases by a one each time moving to the next term. In the previous equation used to

computer range hash(3, 5), scaling prefix hashi−1 = prefix hash2 by pj−i+1 results in the

correct polynomial hash as shown below.

range hash(3, 5) = prefix hash5 − prefix hash2 × pj−i+1

= prefix hash5 − prefix hash2 × p3

= (x1 × p4 + x2 × p3 + x3 × p2 + x4 × p1 + x5 × p0)

− (x1 × p4 + x2 × p3)

= x3 × p2 + x4 × p1 + x5 × p0

9

More generally, the hash of any sequence from index i to index j inclusive (1 ≤ i ≤ j ≤ N)

can be expressed as follows (TimonKnigge, 2014).

range hash(i, j) = prefix hashj − prefix hashi−1 × pj−i+1

The procedure for calculating range hashes using prefix hashes can be expressed using pseu-

docode as follows.

Algorithm 3 Prefix Hashes/Range Hashes

1: procedure prefix hash(arr, p, M)
2: arrLen := length of arr
3: hash := 0
4: prefix hash := empty list
5: prefix hash → push back(hash)
6: for i:=0 to arrLen do
7: hash *= p
8: hash += arr[i]
9: hash %= M ▷ % denotes the modulus operator
10: prefix hash → push back(hash)

11: return prefix hash

12:

13: procedure range hash(arr, p, M, l, r)
14: prefix hash := PREFIX HASH(arr, p, M)
15: return (prefix hash[j])− (prefix hash[i-1]× pj−i+1)

3.2 Binary Indexed Tree

The binary indexed tree is a data structure that provides range queries and point value updates

for binary operations (a mathematical operation that has both an identity element and an

inverse element) efficiently in logarithmic time complexity (cp-algorithms, 2024). The binary

indexed tree was first popularized in 1994 by Peter Fenwick as ”a new data structure for

cumulative frequency tables” (Fenwick, 1994).

As suggested by the name, binary indexed trees take advantage of the binary number

system to efficiently perform its operations. Although its name is evocative of a tree structure,

binary indexed trees are often more easily understood and more commonly represented by a

10

one-indexed array. This method of representing the binary indexed tree as an array will also

be how the different operations of the binary indexed tree will be explained in this paper.

In a binary indexed tree, each index is ”responsible” for a certain range of values based on

the index’s least significant bit (LSB). In the context of this paper, where the binary indexed

tree will be used to store a sum of value and operate using addition, an index’s responsibility

refers to the range of values that it sums (and later stored at that given index). It should be

noted that a binary indexed tree is not only limited to addition, but any binary operations,

as mentioned previously. Additionally, the LSB of any number is the value of the active bit

that is the furthest right, for example, the LSB of 10 (10102 written in binary) would be 2 and

the LSB of 8 (10002 written in binary) would be 8. Figure 1 gives a visual representation

of a binary indexed tree represented using a one-indexed array with the indices, the binary

forms of the indices, and the range of responsibility of each index all displayed from left to

right, respectively. The ranges of responsibility for each index are denoted visually by coloured

bars that begin orange coloured and traverse down as a dark blue colour if needed. The total

number of indices each bar will reach is equal to that of the respective starting index’s LSB.

For example, in the case of index 6, its range of responsibility is 2 in turn reaching itself as

well as index 5. In the case of index 3, its range of responsibility is 1, making it reach only

one singular index which is itself.

11

Figure 1: Ranges of responsibility for each index in a binary indexed tree with 8 values

3.2.1 Querying using binary indexed tree

In the context of binary indexed tree, the query operation can be understood as an operation

used to find the cumulative value, based on the binary operation that the binary indexed tree

is told to support, from a certain starting index to 1. If a binary indexed tree using addition

is considered, a query starting at index i would return the sum of values up to that index

from the original array used to construct the binary indexed tree (or in other words a prefix

sum up to index i).

When querying a binary indexed tree, a starting index, i, must first be given as a parameter.

Using this starting index i, the query operation will continuously add the value at index i

from the array used to represent a binary indexed tree to some variable (to keep track of

the cumulative value) and remove the LSB of i from i until i equals 0 (all of the starting

index’s active bits have been removed). As an example, consider a query starting at index 7

of a binary indexed tree and let total be the value that will store the resulting value from the

query. In this example, the value at index 7 of the binary indexed tree will first be added to

total and 1 will be subtracted from 7 (01112 in binary) as 1 is its LSB resulting in the next

12

index being considered to be index 6. The value at index 6 of the binary indexed tree will then

be added to total and 2 will be subtracted from 6 (01102 in binary) as 2 is its LSB resulting

in the next index being considered to be index 4. The value at index 4 of the binary indexed

tree will be added and the query is complete as the LSB of 4 (01002 in binary) is equal to 4

resulting in the next index being considered to be index 0, which ”does not exist” within a

one-indexed array used to represent a binary indexed tree.

Visually, this process can be understood as a downward cascade starting from the starting

index until index 0 is reached. In Figure 2, the cascade of values used for querying a binary

indexed tree for the prefix sum starting from index 7 is indicated in yellow where the downward

arrows point towards the subsequent index used in the query. From Figure 2, it could also

be noticed that the bars coloured in yellow (the range of responsibilities of indexed using the

query) are able to come together to form a larger cumulative range of responsibility that spans

from index 7 to index 1.

Figure 2: Querying binary indexed tree for prefix sum starting from index 7 (in yellow)

The procedure for querying a binary indexed tree (using addition) can be expressed as

follows, where tree would store the array representation of a binary indexed tree and i is the

starting index.

13

Algorithm 4 Querying Using binary indexed tree

1: procedure QUERY(tree, i)
2: total := 0
3: while i > 0 do
4: total += tree[i]
5: i -= i &(−i) ▷ i &(−i) returns the least significant bit of i

6: return total

3.2.2 Value Updates using Binary Indexed Tree

Updating a value in a binary indexed tree functions similarly to the process for querying,

as both rely heavily on binary operations and the least significant bit. For value updates,

however, the least significant bit is added to the current node being processed, rather than

subtracted, until we reach an index that is equal to or larger than the highest index being

considered. Graphically, this means that instead of cascading downwards like when querying

a binary indexed tree, the indices being updated will cascade upwards. Likewise, it could also

be visualized by drawing a horizontal line at the index being updated and updating every

single index where its range of responsibility crosses the horizontal line (see Figure 3). For

example, if the value stored in index 3 of the original array used to construct the binary

indexed tree was updated, the value at index 3 in the binary indexed tree will first be updated

then the value at index 4 (3 plus LSB of 3, which is 1) then the value at index 8 (4 plus LSB

of 4, which is 4). Figure 3 illustrates the process explained above graphically, where all of

the indices coloured in yellow are indices that will be updated if the value at index 3 of the

original array used to construct the binary indexed tree was updated. The upward arrows in

Figure 3 indicate the subsequent index of the binary indexed tree being updated.

14

Figure 3: Point Update of binary indexed tree starting from index 3 (in yellow)

The procedure for updating a binary indexed tree can be expressed as follows, where tree

would store the array representation of a binary indexed tree, i being the index of the original

array that is being updated and diff being the difference between the updated value and the

original value.

Algorithm 5 Point Updates Using binary indexed tree

1: procedure UPDATE(tree, i, diff)
2: while i < length of tree do
3: tree at i += diff
4: i += i &(−i) ▷ i &(−i) returns the least significant bit of i

5: return ▷ void function, no return type

3.2.3 Constructing a Binary Indexed Tree

To construct a binary indexed tree, it is possible to simply progressively populate each index

by updating each index in the binary indexed tree with each index in an array A using the

procedure for value updates as described above. Although this algorithm for constructing

a binary indexed tree would take O(NlogN) time, it should be noted that there exists an

algorithm that can construct the same array representation of a binary indexed tree in O(N)

15

time (Fiset, 2017).

The procedure for constructing a binary indexed tree in O(NlogN) time can be expressed

as follows, where tree denotes a 1-indexed array that will represent the binary indexed tree,

arr being the array the BIT will be formed from, and UPDATE(...) referring to the point

update function described above.

Algorithm 6 Construction of Binary Indexed Tree

1: procedure CONSTRUCT(arr)
2: arrlen := length of arr
3: tree := array of size (arrlen + 1)
4: for i:=1 to arrlen + 1 do
5: UPDATE(tree, i, arr[i])

6: return tree

3.2.4 Finding Least Significant Bit of a Number

To find the value of the least significant bit of any integer K, the following operation can be

used, where & represents the bitwise AND operator.

K&(−K)

To understand why this operation works to find the value of the least significant bit, we

can consider the value of 106 in binary, which is expressed by 11110100001001000000 in little

endian (Parr, 2021). To find −106 in binary, we can consider the two’s complement method of

representing signed integers, which can be achieved in two steps: inverting all bits (changing

every 1 to a 0 and every 0 to a 1) and adding 1 to the inverted number. After inverting

all bits in 106, we get 00001011110110111111 (Finley, 2000). Notice how all the trailing 0’s

from the binary form of 106 are converted to trailing 1’s. After adding 1 to this inverted

number, all trailing 1’s will be flipped to 0’s and the rightmost 0 being flipped to 1 which is

also the position of our rightmost 1 in the original number. When we take bitwise AND of

both numbers, only the rightmost active bit will remain as no other pairs of bits between the

two numbers are both active.

16

To clarify the assertions above, the following binary numbers express 106 in little endian

and −106 using two’s complement where the underlined portion describes the similarities

between the two binary representations as well as the the changes that occurred after adding

1 to the inverted number:

−106 :00001011110111000000

106 :11110100001001000000

3.3 Extending Binary Indexed Trees To Maintain Polynomial Hashes

In order to properly maintain polynomial hashes using binary indexed trees, some crucial

properties of polynomial hashing and prefix sums must be observed. First, the similarities

between a prefix hash and a prefix sum can be observed as follows.

H(a) =(a1 × pn−1 + a2 × pn−2 + a3 × pn−3 + ...+ an × p0) mod M

prefix(a) =a1 + a2 + a3 + ...+ an

Between the two, it can notice that they both involve summing a consecutive sequence of

values, with the only difference being the multiplication and modulo operations that occurs

when calculating prefix hashes. Based on this observation, it is reasonable to assume that it

is possible to process polynomial hashes using binary indexed trees similarly to how addition

is processed. More formally, for a binary indexed tree maintaining polynomial hashes, any

index i in the binary indexed tree will maintain the polynomial hash for the values from index

i − LSB(i) to i in the original array used to construct the binary indexed tree. Though it

must be noted that in this case, the factors of p for each value must be consistently maintained

within the binary indexed tree. After understanding the similarities between prefix sums and

prefix hashes, maintaining polynomial hashes using binary indexed trees breaks down into a

problem of properly maintaining the powers of p that scale each value.

17

To properly maintain these powers of p, we need to observe the changes in multiplying

powers of p for any values, ai, used to form a polynomial hash. The generalized formula for

polynomial hashes is as follows:

H(a) = (a1 × pn−1 + a2 × pn−2 + a3 × pn−3 + ...+ an × p0) mod M

Through this generalized formula for polynomial hashes, it can be seen that for prefix hashes,

the index for the power of p for any value ai is always n− i where n denotes the length of the

array and i denotes the index of the element. Similarly, for hashes being maintained which

are not prefix sums but rather a latter portion of a prefix hash (these hashes will be termed

as ”partial hash”) the same principle applies. This is because the ranges of responsibility of

any index in a binary indexed tree can be expressed by the range [i− LSB(i), i], making any

partial hash equivalent to the sum of the last LSB(i) values in the polynomial representing a

prefix hash of length i. This can be seen in the case of index 6 as follows, where it will store

the sum of the last two components of the full prefix hash of length 6 because its LSB is equal

to two. The partial hash and the prefix hash is aligned to highlight how the partial hash is a

latter portion of the prefix hash.

Partial Hash =a5 × p6−5 + a6 × p6−6

=a5 × p1 + a6 × p0

Prefix Hash of length 6 = a1 × p5 + ...+ a4 × p2+a5 × p1 + a6 × p0

Using this observation about the the powers of p, the construction of the binary indexed tree

follows the same algorithm as described in section 3.2.3 but instead of simply adding on a

value, an additional factor of picurrent−istart is applied, where icurrent describes the current index

being added using the update operator and istart describes the index that we started at when

the update operator was first called.

18

Although the above maintains our binary indexed tree to store polynomial hashing, it does

not yet return accurate results for querying the hash of a range. Let prefix hash(r) denote

the operation for querying a prefix hash of length r using a binary indexed tree. If the function

prefix hash(6) were to call, it should return a value equal to BIT[6] + BIT[4] (see section

3.2.1 about why), if no further processing is applied, which can be expressed by

BIT[6] + BIT[4] = (a5 × p1 + a6 × p0) + (a1 × p3 + a2 × p2 + a3 × p1 + a4 × p0)

However, accurately, prefix hash(6) should return a prefix hash of length 6 and should be

expressed as

prefix hash(6) = a1 × p5 + a2 × p4 + a3 × p3 + a4 × p2 + a5 × p1 + a6 × p0

Rearranging the first equation, it can be seen that

BIT[4]+ BIT[6] = (a1 × p3 + a2 × p2 + a3 × p1 + a4 × p0) + (a5 × p1 + a6 × p0)

Comparing the two equations, it can be seen that in the first equation, BIT [4] is offset

by a multiple of p2 = p6−4; if BIT [4] was scaled by p2, the two equations would be equal. In

general, all indexes being considered in a query to compute a prefix hash up to index istart

need to be scaled by a factor of pistart−icurrent , where icurrent denotes the index that is currently

being considered in the query.

4 Conclusion

This essay explored two different ways of comparing arrays when the values of the array are

being updated, one more efficient running in O(QlogN) time complexity, while the other being

less efficient running in O(QN).

19

5 Citations

1. maxcruickshanks. (n.d.). Comparing arrays - DMOJ: Modern online judge. DMOJ.

https://dmoj.ca/problem/comparingarrays

2. Moore, K., Chumbley, A., & Khim, J. (n.d.). Rabin-Karp algorithm. Brilliant Math &

Science Wiki. https://brilliant.org/wiki/rabin-karp-algorithm/

3. TimonKnigge. (2014). How do I find hash of any sub-string in O(1) by O(N) prepro-

cessing. Codeforces. https://codeforces.com/blog/entry/18407

4. cp-algorithms. (2024, January 24). Fenwick tree. Fenwick Tree - Algorithms for Com-

petitive Programming. https://cp-algorithms.com/data structures/fenwick.html

5. Fenwick, P. (1994, March 1). [PDF] a new data structure for cumulative frequency

tables — semantic ... https://www.semanticscholar.org/paper/A-new-data-structure-

for-cumulative-frequency-Fenwick/769fb8055fbe0997ef8d9dab6c9abf37489c6575

6. Fiset, W. (2017, June 9). Fenwick Tree Construction. YouTube.

https://www.youtube.com/watch?v=BHPez138yX8

7. Parr, K. (2021, February 1). What is endianness? big-endian vs little-endian explained

with examples. freeCodeCamp.org. https://www.freecodecamp.org/news/what-is-endianness-

big-endian-vs-little-endian/

8. Finley, T. (2000, April). Two’s Complement. Two’s complement.

https://www.cs.cornell.edu/ tomf/notes/cps104/twoscomp.html

20

	Introduction
	Naive Solution in O(QN) Time Complexity
	Optimized Solution in O(QlogN) Time Complexity
	Polynomial Hash
	Using Prefix Sum To Compare Equal-Sized Segments of Sequences

	Binary Indexed Tree
	Querying using binary indexed tree
	Value Updates using Binary Indexed Tree
	Constructing a Binary Indexed Tree
	Finding Least Significant Bit of a Number

	Extending Binary Indexed Trees To Maintain Polynomial Hashes

	Conclusion
	Citations

